ENVIRONMENTAL PRODUCT DECLARATION

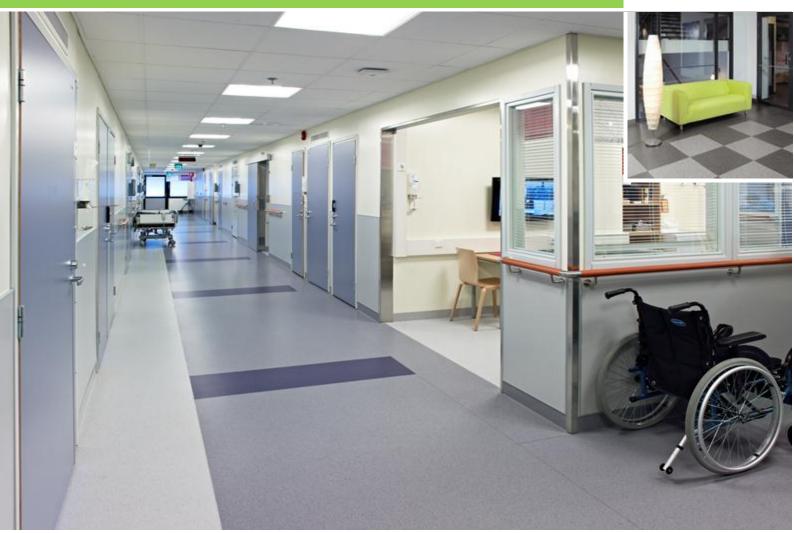
as per ISO 14025 and EN 15804

Owner of the Declaration Upofloor Oy, Finland

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-UPO-2013112-EN


Issue date 01.04.2013 Valid to 31.03.2018

Resilient floor covering based upon synthetic thermoplastic polymers according to EN 14565

Upofloor Oy, Finland

www.bau-umwelt.com / https://epd-online.com

General Information

Upofloor

Programme holder

IBU - Institut Bauen und Umwelt e.V.

Panoramastr. 1 10178 Berlin

Declaration number

EPD-UPO-2013112-EN

This Declaration is based on the Product Category Rules:

Floor coverings, Version 1.1: 29.10.2012 (PCR tested and approved by the independent expert committee (SVR))

Issue date

01.04.2013

Valid to

31.03.2018

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

Prof. Dr.-Ing. Hans-Wolf Reinhardt (Chairman of SVR)

Synthetic thermoplastic polymers

Owner of the Declaration

Upofloor Oy Souranderintie 2 FI-37101 Nokia

Declared product / Declared unit

1m² Resilient floor covering based upon synthetic thermoplastic polymers, installed

Scope:

In this EPD resilient floor coverings based upon synthetic thermoplastic polymers are declared. The application of this EPD is restricted **to non PVC Enomer product line** (former LifeLine) of Upofloor Oy. It is delivered in the designs

- LifeLine tile
- Xpression (LifeLine LT)
- Zero (LifeLine CS / Forte)

Data are based upon production during 2011 in Finland. The owner of the declaration shall be liable for the underlying information and evidence.

Verification

The CEN Norm EN 15804 serves as the core PCR Independent verification of the declaration and data according to ISO 14025

internall

v	ovtornal	ı
Х	external	ľ

Prof. Dr. Bi/git Grahl

Prof. Dr. Bi/git Grahl (Independent verifier appointed by SVR)

Product

Product description

Resilient floor coverings are an entire product family of flexible flooring solutions available in sheet, tiles and planks. It is classified in heterogeneous or homogeneous composition based on vinyl, linoleum, cork, rubber or synthetic thermoplastic polymers. Resilient floor coverings can provide different functionalities (acoustic, static control, slip resistance, easy maintenance etc.) to match a wide range of domestic, commercial and industrial applications. It is available in an enormous range of patterns and colours fitting with inspiration and decorative needs. LifeLine products are based upon synthetic thermoplastic polymers and are supplied in either tile, plank or roll form.

Application

According to ISO 10874 (EN 685) the area of application for resilient floor coverings is indicated by use classes. The declared product group covers the use classes 23, 34 and 43.

Technical Data

Technical construction data for the product group:

reclinical construction data for the product group.								
Constructional data	Value	Unit	Test standard					
Product thickness	2.0	mm	ISO 24346					
Surface weight	3.6	kg/m ²	ISO 23997					
Product Form	sheet							

Base materials/ Ancilliary materials

The product group has the following composition:

The predact great has the following composition:								
Component	Value	Unit						
Filler	37.9	%						
Pigments	1.9	%						
Polymers (EMAA, EVA)	26.3	%						
Auxiliaries	2.8	%						
Lacquer	0.7	%						
Flooring Recyclate	30.4	%						

The declared recipes were checked with the REACH candidate list from June 18th, 2012 and did not contain listed REACH substances.

Reference service life

This EPD does not indicate RSL. Only module B2 (maintenance) is declared and the use stage scenario is independent on the life time of the product.

The declared modules in the table of results (chapter 5) refer to one life cycle of the floor covering with B2 (cleaning) being declared for a time period of one year. For the calculation of the impact of B2 for a different time period the values for B2 have to be multiplied by the estimated service life in years.

LCA: Calculation rules

Declared Unit

1m² of installed floor covering.

Name	Value	Unit
Declared unit	1	m^2
Conversion factor to 1 kg	1/3.6	-

System boundary

Type of EPD: cradle to grave

Modules A1-A3 include processes that provide materials and energy input for the system, manufacturing and transport processes up to the factory gate, as well as waste processing.

Module A4 includes transport of the floor covering to the place of installation.

Module A5 includes the production of adhesive for the installation of the floor covering, and incineration of offcuts and packaging material.

Module B2 is including provision of cleaning agent, energy and water consumption for the cleaning of the floor covering incl. waste water treatment. The LCA

results in this EPD are declared for a one year usage.

Module C1 considers electricity supply for the deconstruction of the flooring.

Module C2 includes transportation of the postconsumer waste to waste processing.

End of life scenarios are declared for:

- 100% incineration in a waste incineration plant (WIP)
- 100% landfilling

Module D includes benefits from all net flows given in module A5 and C3 that leave the product boundary system after having passed the end-of-waste state in the form of recovery and/or recycling potentials. Module D is declared for each scenario separately.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to EN 15804 and the building context, respectively the product-specific characteristics of performance, are taken into account.

LCA: Scenarios and additional technical information

The following technical information is a basis for the declared modules

Transport to the construction site (A4)

Name	Value	Unit
Litres of fuel	0,0058	l/m ² *100km
Transport distance	2000	km
Capacity utilisation (including empty runs)	85	%

Installation in the building (A5)

motunation in the bunding (7 to)	,	
Name	Value	Unit
Auxiliary (adhesive)	0.3	kg
Material loss (installation waste)	6.0	%

Maintenance (B2)

mameriance (B2)		
Name	Value	Unit
Maintenance cycle (vacuum cleaning & wet cleaning)	156	number/a
Water consumption	0.003	m ³
Auxiliary (detergent)	0.04	kg
Electricity consumption	0.55	kWh

End of Life (C1-C4)

Name	Value	Unit
Incineration	3.6	kg
Landfilling	3.6	kg

Reuse, recovery and/or recycling potentials (D), relevant scenario information

For module D the credits given in module A5 and C3 are declared.

For waste incineration combustion in a WIP (R1 < 0.6) with energy recuperation is considered.

LCA: Results

The results for module B2 refer to a period of one year.

For the calculation of the impact of B2 for a certain service life the values for B2 have to be multiplied by the estimated service life in years.

DEG	RIP	<u>TION O</u>	F TH	E SYS	TEM BO	DUND	ARY (2	X = IN	CLUE	DED IN	LCA; I	MND =	MODU	LE NO	D TC	ECLA	RED)	
PROI	DUCT	STAGE	ON PF	STRUCTI ROCESS AGE									BEYO SY:	FITS AND DADS DND THE STEM NDARYS				
Raw material supply	Transport	Manufacturing	Transport	Construction- installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-	Recycling- potential	
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4		D	
	Χ		Х	Х	MND	Х	MND	MND	MND	MND	MND	Х	Х	Х	Χ		Х	
RESU	JLTS	OF TH	E LC	A - EN	VIRON	MENT	AL IM	PACT	: 1m²	install	ed							
Param	eter	Unit		A1 - A3	A4	A5	B	2	C1	C2	C3/I ¹	C3/L ²	C4/I	C4	/L	D/I	D/L	
						_			_			00,2						
GWI	>	[kg CO ₂ -/	Äq.]	9,1E+00	3,7E-01	8,2E-0		-01 1,4	4E-02	3,4E-02	5,8E+00		0	2,6E			-1,6E-01	
ODF	>	[kg CFC11	-Äq.]	5,5E-09	6,4E-12	2,5E-1	1 4,3E 0 2,6E	-10 1,3	3E-11	6,0E-13	5,8E+00 1,0E-09	0	0	1,3E	-10 -9	9,1E-10	-5,92E-11	
ODF AP)	[kg CFC11 [kg SO ₂ -A	-Äq.] Äq.]	5,5E-09 2,5E-02	6,4E-12 1,7E-03	2,5E-1 1,1E-0	1 4,3E 0 2,6E 3 1,6E	-10 1,3 -03 6,8	3E-11 3E-05	6,0E-13 1,5E-04	5,8E+00 1,0E-09 2,8E-03	0 0 0	0	1,3E 7,8E	-10 -9 -04 -5	9,1E-10 5,7E-03	-5,92E-11 -3,8E-04	
ODF AP EP	0	[kg CFC11 [kg SO ₂ -k [kg PO ₄ 3-	-Äq.] Äq.] Äq.]	5,5E-09 2,5E-02 2,2E-03	6,4E-12 1,7E-03 3,9E-04	2,5E-1 1,1E-0 1,6E-0	1 4,3E 0 2,6E 3 1,6E 4 1,3E	-10 1,3 -03 6,8 -04 3,6	3E-11 3E-05 6E-06	6,0E-13 1,5E-04 3,6E-05	5,8E+00 1,0E-09 2,8E-03 3,4E-04	0 0 0 0	0 0	1,3E 7,8E 9,6E	-10 -9 -04 -5 -04 -3	9,1E-10 5,7E-03 3,9E-04	-5,92E-11 -3,8E-04 -2,6E-05	
ODF AP EP POC	P	[kg CFC11 [kg SO ₂ -/ [kg PO ₄ ³ - [kg Ethen	-Äq.] Äq.] Äq.] Äq.]	5,5E-09 2,5E-02 2,2E-03 2,7E-03	6,4E-12 1,7E-03 3,9E-04 -5,5E-04	2,5E-1 1,1E-0 1,6E-0 1,8E-0	1 4,3E 0 2,6E 3 1,6E 4 1,3E 4 1,7E	-10 1,3 -03 6,8 -04 3,6 -04 4,0	3E-11 3E-05 6E-06 0E-06	6,0E-13 1,5E-04 3,6E-05 -5,1E-05	5,8E+00 1,0E-09 2,8E-03 3,4E-04 6,9E-04	0 0 0 0 0 0	0 0 0	1,3E 7,8E 9,6E 1,2E	-10 -9 -04 -5 -04 -3 -04 -4	9,1E-10 5,7E-03 3,9E-04 4,7E-04	-5,92E-11 -3,8E-04 -2,6E-05 -3,12E-05	
ODF AP EP POC ADP	P E	[kg CFC11 [kg SO ₂ -Å [kg PO ₄ ³ - [kg Ethen [kg Sb Ä	-Äq.] Äq.] Äq.] Äq.]	5,5E-09 2,5E-02 2,2E-03 2,7E-03 4,8E-06	6,4E-12 1,7E-03 3,9E-04 -5,5E-04 1,4E-08	2,5E-1 1,1E-0 1,6E-0 1,8E-0 2,3E-0	1 4,3E 0 2,6E 3 1,6E 4 1,3E 4 1,7E 7 2,0E	-10 1,3 -03 6,8 -04 3,6 -04 4,0 -07 2,0	3E-11 3E-05 6E-06 0E-06	6,0E-13 1,5E-04 3,6E-05 -5,1E-05 1,3E-09	5,8E+00 1,0E-09 2,8E-03 3,4E-04 6,9E-04 4,7E-07	0 0 0 0 0	0 0 0 0	1,3E 7,8E 9,6E 1,2E 5,0E	-10 -9 -04 -5 -04 -3 -04 -4 -08 -4	9,1E-10 5,7E-03 3,9E-04 4,7E-04 1,9E-07	-5,92E-11 -3,8E-04 -2,6E-05 -3,12E-05 -1,2E-08	
ODF AP EP POC ADP ADP	P E F Oon	[kg CFC11 [kg SO ₂ -k [kg PO ₄ ³ - [kg Ethen [kg Sb Ä [MJ] GWP = Glo = Eutrophi	-Äq.] Äq.] Äq.] Äq.] aq.] bal war cation p	5,5E-09 2,5E-02 2,2E-03 2,7E-03 4,8E-06 2,1E+02 rming potential;	6,4E-12 1,7E-03 3,9E-04 -5,5E-04 1,4E-08 5,1E+00 ential; ODI POCP = F	2,5E-1 1,1E-0 1,6E-0 1,8E-0 2,3E-0 1,2E+0 P = Deplorormation fossil res	1 4,3E 0 2,6E 3 1,6E 4 1,3E 4 1,7E 7 2,0E 01 8,3E- etion pot n potentia cources;	-10 1,3 -03 6,8 -04 3,6 -04 4,0 -07 2,0 +00 2,5 ential of tropo ADPF =	3E-11 3E-05 6E-06 0E-06 0E-09 5E-01 the stra ospheric Abiotic	6,0E-13 1,5E-04 3,6E-05 -5,1E-05 1,3E-09 4,7E-01 tospheric	5,8E+00 1,0E-09 2,8E-03 3,4E-04 6,9E-04 4,7E-07 2,6E+01 ozone lay	0 0 0 0 0 0 0 0 er; AP = A	0 0 0 0 0 0 Acidificationts; ADPI	1,3E 7,8E 9,6E 1,2E 5,0E 4,0E	-10 -9 -04 -5 -04 -3 -04 -4 -08 -4 +00 -4	9,1E-10 5,7E-03 3,9E-04 4,7E-04 1,9E-07 4,0E+01 and and	-5,92E-11 -3,8E-04 -2,6E-05 -3,12E-05 -1,2E-08 -2,7E+00 water; EP	
ODF AP EP POC ADP ADP	P E F Oon	[kg CFC11 [kg SO ₂ -l- [kg PO ₄ ³ - [kg Ethen [kg Sb Ä [MJ]	-Äq.] Äq.] Äq.] Äq.] aq.] bal war cation p	5,5E-09 2,5E-02 2,2E-03 2,7E-03 4,8E-06 2,1E+02 rming potential;	6,4E-12 1,7E-03 3,9E-04 -5,5E-04 1,4E-08 5,1E+00 ential; ODI POCP = F	2,5E-1 1,1E-0 1,6E-0 1,8E-0 2,3E-0 1,2E+0 P = Deplorormation fossil res	1 4,3E 0 2,6E 3 1,6E 4 1,3E 4 1,7E 7 2,0E 01 8,3E- etion pot n potentia cources;	-10 1,3 -03 6,8 -04 3,6 -04 4,0 -07 2,0 +00 2,5 ential of tropo ADPF =	3E-11 3E-05 6E-06 0E-06 0E-09 5E-01 the stra ospheric Abiotic	6,0E-13 1,5E-04 3,6E-05 -5,1E-05 1,3E-09 4,7E-01 tospheric	5,8E+00 1,0E-09 2,8E-03 3,4E-04 6,9E-04 4,7E-07 2,6E+01 ozone lay	0 0 0 0 0 0 0 0 er; AP = A	0 0 0 0 0 0 Acidificationts; ADPI	1,3E 7,8E 9,6E 1,2E 5,0E 4,0E	-10 -9 -04 -5 -04 -3 -04 -4 -08 -4 +00 -4	9,1E-10 5,7E-03 3,9E-04 4,7E-04 1,9E-07 4,0E+01 and and	-5,92E-11 -3,8E-04 -2,6E-05 -3,12E-05 -1,2E-08 -2,7E+00 water; EP	
ODF AP EP POC ADP ADP	P E F Oon	[kg CFC11 [kg SO ₂ -k [kg PO ₄ ³ - [kg Ethen [kg Sb Ä [MJ] GWP = Glo = Eutrophi	-Äq.] Äq.] Äq.] q.] pbal war cation p	5,5E-09 2,5E-02 2,2E-03 2,7E-03 4,8E-06 2,1E+02 rming potential;	6,4E-12 1,7E-03 3,9E-04 -5,5E-04 1,4E-08 5,1E+00 ential; ODI POCP = F	2,5E-1 1,1E-0 1,6E-0 1,8E-0 2,3E-0 1,2E+0 P = Deplorormation fossil res	1 4,3E 0 2,6E 3 1,6E 4 1,3E 4 1,7E 7 2,0E 01 8,3E- etion pot n potentia cources;	-10 1,3 -03 6,8 -04 3,6 -04 4,0 -07 2,0 +00 2,5 ential of tropo ADPF =	3E-11 3E-05 6E-06 0E-06 0E-09 5E-01 the stra ospheric Abiotic	6,0E-13 1,5E-04 3,6E-05 -5,1E-05 1,3E-09 4,7E-01 tospheric	5,8E+00 1,0E-09 2,8E-03 3,4E-04 6,9E-04 4,7E-07 2,6E+01 ozone lay	0 0 0 0 0 0 0 0 er; AP = A	0 0 0 0 0 0 Acidificationts; ADPI	1,3E 7,8E 9,6E 1,2E 5,0E 4,0E	-10 -9 -04 -5 -04 -6 -04 -6 -08 -7 +00 -4 tital of littic depl	9,1E-10 5,7E-03 3,9E-04 4,7E-04 1,9E-07 4,0E+01 and and	-5,92E-11 -3,8E-04 -2,6E-05 -3,12E-05 -1,2E-08 -2,7E+00 water; EP	
ODF AP EP POC ADP ADP Capti	P E F C C O C C C C C C C C C C C C C C C C	[kg CFC11 [kg SO ₂ -/ [kg PO ₄ ³ - [kg Ethen [kg Sb Ä [MJ] GWP = Glo = Eutrophi GOF TH Unit	-Äq.] Äq.] Äq.] Äq.] Äq.] pbal war cation p	5,5E-09 2,5E-02 2,2E-03 2,7E-03 4,8E-06 2,1E+02 rming potential; I A - RE 1 - A3	6,4E-12 1,7E-03 3,9E-04 -5,5E-04 1,4E-08 5,1E+00 ential; OD POCP = F	2,5E-1 1,1E-0 1,6E-0 1,8E-0 2,3E-0 1,2E+0 P = Depler cormation fossil res	1 4,3E 0 2,6E 3 1,6E 4 1,3E 4 1,7E 7 2,0E 01 8,3E- etion potentia ources;	-10 1,3 -03 6,8 -04 3,6 -04 4,0 -07 2,0 +00 2,5 ential of tropo ADPF =	BE-11 BE-05 GE-06 DE-06 DE-09 DE-09 DE-01 The stra ospheric Abiotic	6,0E-13 1,5E-04 3,6E-05 -5,1E-05 1,3E-09 4,7E-01 tospheric c ozone p depletion	5,8E+00 1,0E-09 2,8E-03 3,4E-04 6,9E-04 4,7E-07 2,6E+01 ozone lay hotochem potential f	0 0 0 0 0 0 0 0 0 0 er; AP = Aical oxidar	0 0 0 0 0 0 Acidificationts; ADPI	1,3E 7,8E 9,6E 1,2E 5,0E 4,0E on poten E = Abio	-10 -9 -04 -5 -04 -4 -08 -7 +00 -4 titial of litic depl	9,1E-10 5,7E-03 3,9E-04 4,7E-04 1,9E-07 4,0E+01 land and	-5,92E-11 -3,8E-04 -2,6E-05 -3,12E-05 -1,2E-08 -2,7E+00 water; EP tential for	
ODF AP EP POC ADP ADP Capti	P E F Oon Con Con Con Con Con Con Con Con Con C	[kg CFC11 [kg SO ₂ -/ [kg PO ₄ ³ - [kg Ethen [kg Sb Å [MJ] GWP = Glo = Eutrophi OF TH	-Äq.] -Äq.] Äq.] Äq.] Äq.] Aq.] bbal war cation p - A1 - 1,6	5,5E-09 2,5E-02 2,2E-03 2,7E-03 4,8E-06 2,1E+02 ming pot potential; I	6,4E-12 1,7E-03 3,9E-04 -5,5E-04 1,4E-08 5,1E+00 ential; ODI POCP = F non	2,5E-1 1,1E-0 1,6E-0 1,8E-0 2,3E-0 1,2E+C P = Depler commation fossil res CE US	1 4,3E 0 2,6E 3 1,6E 4 1,3E 4 1,7E 7 2,0E 11 8,3E etion pot potentia ources; E: 1m	-10 1,3 -03 6,8 -04 3,6 -04 4,0 -07 2,0 +00 2,5 ential of tropo ADPF =	3E-11 3E-05 6E-06 DE-06 DE-09 5E-01 the stra ospheric Abiotic	6,0E-13 1,5E-04 3,6E-05 -5,1E-05 1,3E-09 4,7E-01 tospheric c ozone pi depletion	5,8E+00 1,0E-09 2,8E-03 3,4E-04 6,9E-04 4,7E-07 2,6E+01 ozone lay hotochem potential f	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,3E 7,8E 9,6E 1,2E 5,0E 4,0E on poten E = Abio	-10 -9 -04 -5 -04 -3 -04 -4 -08 -7 +00 -4 tital of littic dept	9,1E-10 5,7E-03 3,9E-04 4,7E-04 1,9E-07 4,0E+01 and and elletion pot	-5,92E-11 -3,8E-04 -2,6E-05 -3,12E-05 -1,2E-08 -2,7E+00 water; EP	

Parameter	Unit	A1 - A3	A4	A5	B2	C1	C2	C3/I	C3/L	C4/I	C4/L	D/I	D/L
PERE	[MJ]	1,6E+01	-	-	-	-	-	-	-	-	-	-	-
PERM	[MJ]	0,0E+00	-	-	1	-	-	-	-	-	-	-	-
PERT	[MJ]	1,6E+01	2,0E-01	1,7E+00	8,3E-01	4,2E-02	1,9E-02	1,2E+00	0	0	1,8E-01	-2,9E+00	-1,9E-01
PENRE	[MJ]	1,6E+02	-	-	-	-	-	-	-	-	-	-	-
PENRM	[MJ]	5,8E+01	-	•		-	-	-	-	-	-	-	-
PENRT	[MJ]	2,1E+02	5,1E+00	1,2E+01	8,3E+00	2,5E-01	4,7E-01	2,6E+01	0	0	4,0E+00	-4,0E+01	-2,7E+00
SM	[kg]	1,7E+00	0	0	0	0	0	0	0	0	0	0	0
RSF	[MJ]	-	-	-	-	-	-	-	-	-	-	-	-
NRSF	[MJ]	-	-	-	-	-	-	-	-	-	-	-	-
FW	[kg]	6,0E+01	2,2E-01	3,2E+00	3,2E+00	1,1E-01	2,1E-02	1,9E+01	0	0	-2,1E+00	-8,3E+00	-5,4E-01

Caption

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Use of net

RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: 1m ² installed

Parameter	Unit	A1 - A3	A4	A5	B2	C1	C2	C3/I	C3/L	C4/I	C4/L	D/I	D/L
HWD	[kg]	1,1E-02	0	7,7E-04	1,9E-03	0	0	1,9E-03	0	0	1,0E-03	0	0
NHWD	[kg]	5,5E-01	6,6E-04	5,4E-02	5,8E-03	1,1E-04	6,1E-05	8,2E-01	0	0	3,6E+00	-1,0E-02	-6,9E-04
RWD	[kg]	1,1E-02	7,1E-06	2,1E-04	7,3E-04	3,7E-05	6,6E-07	7,5E-04	0	0	7,1E-05	-2,6E-03	-1,7E-04
CRU	[kg]	-	-	-	-	-	-	-	-	-	-	-	-
MFR	[kg]	-	-	-	-	-	-	-	-	-	-	1,8E+00	1,8E+00
MER	[kg]	-	-	-	-	-	-	-	-	-	-	-	-
EEE	[MJ]	-	-	-	-	-	-	-	-		=	7,2E+00	4,7E-01
EET	[MJ]	-	-	-	-	-	-	-	-	-	-	2,1E+01	1,4E+00

HWD = Hazardous waste disposed; NHWD = Non hazardous waste disposed; RWD = Radioactive waste disposed; CRU =
Caption Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET =
Exported thermal energy

Not all of the life cycle inventories applied in this study support the methodological approach for the waste and water indicators. The data are based on publications of industry. The indicators for waste and water of the system are evaluated, but contain a higher degree of uncertainty.

¹ Scenario "I" = 100% Incineration

² Scenario "L" = 100% Landfilling

The evaluation of best EoL-scenario requires the consideration of further aspects like avoidance of combustion of fossil fuels when incinerated and demand for landfilling when recycled.

UPOFLOOR

References

Institut Bauen und Umwelt 2011

Institut Bauen und Umwelt e.V., Berlin (pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2011-09 www.bau-umwelt.de

PCR 2011, Part A

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report. September 2012 www.bau-umwelt.de

PCR 2012, Part B

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part B: Requirements on the EPD for floorcoverings, Version 1.1, www.bau-umwelt.com, 10/2012

ISO 10874 (previously EN 685)

EN ISO 10874:2009 Resilient, textile and laminate floor coverings - Classification

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

ISO 23997

ISO 23997:2012-04: Resilient floor coverings - Determination of mass per unit area

ISO 24346

ISO 24346:2012-04: Resilient floor coverings - Determination of overall thickness

EN 14565

EN 14565:2004 Resilient floor coverings - Floor coverings based upon synthetic thermoplastic polymers - Specification

EN 15804

EN 15804:2012-04: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

Publisher

+49 (0)30 30 87 74 8 - 0 +49 (0)30 30 87 74 8- 29 Institut Bauen und Umwelt e.V. Tel Panoramastr. 1 Fax 10178 Berlin Mail info@bau-umwelt.com Germany Web www.bau-umwelt.com

Programme holder

+49 (0)30 30 87 74 8 - 0 Institut Bauen und Umwelt e.V. Tel Panoramastr. 1 Fax +49 (0)30 30 87 74 8 - 29 10178 Berlin Mail info@bau-umwelt.com Web www.bau-umwelt.com Germany

Owner of the Declaration

+358 20 740 9600 Tel **Upofloor Oy** Fax +358 20 740 9737 Souranderintie 2 export@upofloor.fi Mail FI-37101 Nokia Web www.upofloor.com www.lifelinefloors.com Finland

Author of the Life Cycle Assessment

PE INTERNATIONAL +49 (0)711 341817-0 Tel +49 (0)711 341817-25 Hauptstraße 111-113 Fax 70771 Leinfelden-Echterdingen Mail info@pe-international.com Germany www.pe-international.com Web